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Abstract

WebGL offers not only a graphics pipeline for modern web browsers, but can also be
used as a simple GPGPU computation environment, making much more sophisti-
cated web applications possible. As a proof-of-concept, WebFlood, a realtime, fully
browser based flood simulation and visualization was implemented. It employs a
semi-lagrangian approach to solving the shallow-water equations. All computation
is done by GLSL shaders on the GPU. The simulation state is displayed in a 3D
visualization, as part of a web page that allows user interaction with the simulation.
WebFlood performs well in the classical 2D dam-break scenario of Fraccarollo and
Toro (1995) and closely reproduces urban flooding behavior of Iowa City (USA),
given digital elevation data. Based on its cross-platform compatibility and simple
distribution, two main applications are suggested: interactive public flood informa-
tion and simulation-aided education for the example of hydrology.
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“Empty your mind, be formless, shapeless — like water.

Now you put water in a cup, it becomes the cup;
You put water into a bottle it becomes the bottle;
You put it in a teapot it becomes the teapot.

Now water can flow or it can crash.
Be water, my friend.” – Bruce Lee
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Chapter 1

Introduction

1.1 Motivation

The first inspiration that would lead to this work were WebGL de-
mos that use GLSL shaders to compute things like particle systems,
flocking behavior, reaction-diffusion equations or hydraulic erosion in
realtime.

Using WebGL for computation became even more interesting for
me after I started developing Citybound, a large-scale, realistic city
simulation game based on web technologies [Eic15]. As of now, all
simulation in Citybound, like agent-based traffic simulation or econ-
omy/demand estimation, is computed on the CPU, in JavaScript.
Since many of these sub-simulations are very parallelizable at heart,
a framework for more efficient, GPU based parallel simulation would
be very beneficial. This work constitutes a first step towards this
goal: it explores the feasibility of doing general-purpose computation
on the GPU without using frameworks like CUDA or OpenCL.

However, it was also important for me that this work would have
a purpose of its own - that is why I tried to find a serious topic of
application that would also be interesting completely independently
from Citybound.

1.2 Fluid and Flood Simulation as a Topic

Fluid simulation turned out to be a very fitting topic, since it is
computationally intensive, but its optimization, parallelization and
implementation on GPUs is well explored (see chapter 2). Further-
more, its visualization is straightforward and interesting to look at.

The simulation of floods is one obvious application that goes be-
yond using fluid simulation for just visual effects or demonstrations
- it has real world significance to both hydrology experts as well as
laypeople who might be affected by floods. Especially for the latter
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group, interaction with a complex simulation only makes sense if it
is simple-to-use and easily accessible - both good arguments for an
implementation of the simulation using web technologies.

The topic was then further specialized on city environments, mak-
ing it more relevant for Citybound and more focused in general.

1.3 GPGPU using WebGL

Before the advent of GPGPU frameworks like CUDA and OpenCL,
general purpose computation on GPUs had to be done by mapping
data structures to graphics primitives and implementing algorithms
as shader programs that operate on these primitives.

Although experimental web bindings for OpenCL exist as browser
add-ons, it is not yet included in any browser, whereas WebGL is
widely adopted - leaving general-purpose WebGL programmers in a
similar situation as those before CUDA/OpenCL.

A basic introduction to such techniques will be given in section
3.2.1, for a more thorough overview I recommend the Old-School
GPGPU Tutorials by Göddeke [Göd06].

1.4 Goal

My goal with this work was to experimentally develop a physically-
based flood simulation using WebGL that produces realistic results
at interactive framerates on commodity hardware.

8



Chapter 2

Related Work and
Background

2.1 Fluid Simulation: Equations and Models

The numerical description of fluid motion is the main focus of the rich
field of Computational Fluid Dynamics (CFD). This section will in-
troduce the Navier-Stokes Equations - they are at the heart of almost
all problems in the field. Then, a short overview of some common
methods of solving them will be given. Finally, a drastic simplifi-
cation of the Navier-Stokes Equations is explained, resulting in the
two-dimensional Shallow-Water Equations.

2.1.1 The Incompressible Navier-Stokes Equations

Since this work is concerned with water, an almost incompressible
fluid, we will only consider the incompressible Navier-Stokes equa-
tions, following [BM07]. The equations describe particle behavior at
every point inside a fluid and are given by:

Incompressibility Condition

∇ · ~u = 0 (2.1)

Momentum Equation

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g + ν∇2~u (2.2)

Where ~u is the velocity of the fluid, ρ its density and p the pressure.
~g are the so called body forces that are applied to the whole fluid
(usually just gravity). ν is the viscosity of the fluid (resistance of the
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fluid to deformation during flow). ∇ is the gradient, ∇· the divergence
and ∇2 = ∇ · ∇ the Laplace operator.

(2.2) can be rewritten with ∂q
∂t + ~u · ∇q = Dq

Dt . This is called the
material derivative - it combines changes of a quantity q over time
with advection of the quantity along a vector field ~u. In the case
of (2.2), the advected quantity is the velocity itself. This process is
also called the self-advection of velocity: ∂~u

∂t + ~u · ∇~u = D~u
Dt . The

unusual-looking ∇~u is the component-wise gradient of ~u.

Momentum Equation with material derivative

D~u

Dt
+

1

ρ
∇p = ~g + ν∇2~u (2.3)

Since macroscopic bodies of water have low viscosity (compared
to small drops, or other liquids like honey) and numerical methods
for solving the Navier-Stokes equations often introduce an artificial
viscosity as an artifact [BM07], it is common to drop viscosity from
the Momentum Equation. The resulting inviscid Navier-Stokes equa-
tions are also called The Euler Equations:

Incompressibility Condition

∇ · ~u = 0 (2.1)

Inviscid Momentum Equation

D~u

Dt
+

1

ρ
∇p = ~g (2.4)

From this simpler form, the step-wise general process of numeri-
cally solving these equations can be shown [Mül+08]: first, external
forces ~g are applied to the system - this is usually the easiest step.
More complex is solving the advection D~u

Dt . The most difficult step is
to solve the pressure term 1

ρ∇p according to (2.1).

Many different methods have been developed in the field, all of
them deal with these solution steps in different ways. Their discussion
here is mostly based on [JX09].
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2.1.2 Grid Based Methods

Grid Based Methods in CFD adopt the Eulerian viewpoint: changes
of quantities at fixed points in space (in this case grid points) are
observed over time. Fluids are then fields of quantities - such as
densities, velocities and temperatures.

The Navier-Stokes equations are rewritten to:

Incompressibility Condition

∇ · ~u = 0 (2.1)

Momentum Equation (Eulerian)

∂~u

∂t
= ~g − (~u · ∇)~u+ ν∇2~u− 1

ρ
∇p (2.5)

They are then discretized onto a grid and numerically solved for
~u using finite differences. (2.5) is typically decomposed into steps:
external forces are introduced, velocities are advected in a forward
timestep and diffused by viscosity. Finally, pressures and velocities
are solved to satisfy (2.1) - this amounts to a solution of the Poisson
equation and requires iteration over the whole fluid body.

The foundational work for this technique was done by Harlow and
Welch [HW65], who also introduced the staggered MAC-Grid, which
improves finite differences (by defining velocities at cell boundaries
and pressures at cell centers), and the Marker and Cell Method, which
uses virtual particles that are advected by the velocity field. Their
only use is to mark filled/empty cells (to keep track of the fluid sur-
face).

The first to animate fluids by solving the full three-dimensional
Navier-Stokes equations, building on the work of Harlow and Welch,
were Foster and Metaxas [FM96], they used an iterative relaxation
scheme to solve for incompressibility.

2.1.3 Particle Based Methods

Particle Based Methods represent the Lagrangian viewpoint of CFD.
Here, individual particles are followed along their motion through the
fluid over time.

The idea to represent simulated fluids by particles and the notion
of particle systems in general was introduced by Reeves [Ree83].

For particles, the Navier-Stokes Equations are written as:
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Incompressibility Condition

∇ · ~u = 0 (2.1)

Momentum Equation (Lagrangian)

D~u

Dt
= ~g + ν∇2~u− 1

ρ
∇p (2.6)

The left side of (2.6) can be seen as the acceleration of a particle,
caused by the net force that is described by the terms on the right-
hand side [JX09].

Advection in the Lagrangian viewpoint is obvious and exact [Mon05]
but the reconstruction of of fluid quantities from particles is nontrivial
- in particular the gradient ∇ and Laplacian operator ∇2 need to be
well defined in an irregularly discretized fluid made out of particles.

Smoothened Particle Hydrodynamics (SPH) is an important method
to achieve this. It came from the field of Astrophysics, where it was
introduced by Gingold and Monaghan [GM77]. Monaghan showed
how it can be applied to the simulation of liquids in [Mon05].

In SPH, a fluid is represented by i particles with positions xi,
masses mi, densities ρi and attributes Ai. It defines how to com-
pute a smooth continuous field A(x) for these attributes, as well as
its gradient and laplacian, from the values of particles, weighted by
a kernel function W (r, h):

A(x) =
∑
i

mi
Ai
ρi
W (x− xi, h) (2.7)

∇A(x) =
∑
i

mi
Ai
ρi
∇W (x− xi, h) (2.8)

∇2A(x) =
∑
i

mi
Ai
ρi
∇2W (x− xi, h) (2.9)

W (r, h) is typically radially symmetric and has finite support.

The main problem of employing SPH is to enforce the incompress-
ibility constraint of (2.1) since it does not deal with pressure directly.
This is the topic of diverse ongoing research (see [JX09, p. 3]).
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2.1.4 Hybrid and Other Approaches

In Eulerian methods, the forward time integration of velocity advec-
tion is numerically unstable. Stam [Sta99] introduced the Lagrangian
viewpoint into the advection step of an otherwise Eulerian method:
at each cell, a virtual particle is traced backwards in time along ~u.
The Eulerian values at this origin position are then used as the new
values in the current cell. This is also called the method of charac-
teristics.

Additionally Stam solved diffusion/viscosity implicitly and em-
ployed a more accurate solver for pressure correction than [FM96].
All of these measures result in unconditionally stable numerical be-
havior even for large time steps, which led to this method becoming
a standard framework for fluid animation.

Building on the semi-lagrangian method of Stam, so called level
set methods were introduced by Foster and Fedkiw [FF01], which are
able to keep track of very complex water surfaces.

An interesting, completely different approach from everything dis-
cussed so far is the Lattice Boltzmann Method (LBM). Like Eulerian
Methods, it is grid based, but models macroscopic fluid behavior
by averaging equations that describe microscopic statistical kinetic
models. The LBM converges to the Navier-Stokes equations and has
many advantages that make it more and more popular. For a detailed
explanation and discussion see [Mül+08, p. 59] and [JX09, p. 4].

2.1.5 The Shallow Water Equations

A specialized and simpler two-dimensional version of the Navier-
Stokes equations can be obtained using the Shallow Water Assump-
tions and integrating over a water column with a fixed base area,
resulting in the so called Shallow Water Equations (SWE).

Here, only a short description of this process will be given, detailed
derivations can be found in [Mül+08, p. 77-82] and [Geo06, p. 36-39].

First the Euler equations (2.1) and (2.4) are further simplified to
vertical gravity as the only external force and complemented with
boundary conditions for an impermeable bottom topography and dy-
namic free surface at the top of the water column.

Then, the central assumption is that pressure is strictly hydrostatic
and thus given by p = ρg∆η. This assumption holds for flows where
the horizontal extent of the body of fluid is much larger than its depth
[Geo06] (this is why these flows are called shallow water flows).

This has two important implications: the vertical velocity is zero
everywhere and the horizontal velocities no longer vary along the
vertical direction - making it possible to integrate over the height of
the water column, reducing the problem to two dimensions.
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In the process, the water height takes over the role of pressure and
the fluid can be represented by a two-dimensional height field.

The final partial derivative form of the Shallow Water Equations
can be given by:

∂η

∂t
+ ~v · ∇η = −η∇ · ~v (2.10)

∂~v

∂t
+ ~v · ∇~v = g∇h (2.11)

Where ~v is the two-dimensional horizontal velocity, η is the water
height above the bottom topography b, h = b + η is the water level
above zero and g is gravity.

This can again be simplified using the material derivative:

Dη

Dt
= −η∇ · ~v (2.12)

D~v

Dt
= g∇h (2.13)

2.2 Two Specializations of Fluid Simulation

Now that some general models of fluid simulation have been dis-
cussed, two specialized research fields that are more closely related
to this work will be highlighted.

2.2.1 Real Time GPU Based Fluid Animation

All three models introduced (grid based, particle based, LBM) lend
themselves well for implementation on the GPU, since many of the
computations can be be done in parallel.

Still in the infancy of GPGPU programming, where GPUs were
only used for fluid visualization techniques, Li, Wei, and Kaufman
[LWK03] already implemented the LBM to fully simulate fluids on
fixed-point graphics hardware.

After the advent of programmable fragment shaders and floating-
point support of GPUs, Bolz et al. [Bol+03] mapped sparse matrices
to textures and adapted the multi grid method to the GPU for fluid
simulation (among other problems).

Wu, Liu, and Liu [WLL04] solve the Navier-Stokes equations using
a grid-based method. They pack all simulation variables into the four
color channels of a texel resulting in a more efficient fluid simulation
than earlier methods - they also introduced an elegant way to rep-
resent arbitrary boundaries inside the simulation domain and store
boundary information in texels as well.
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Crane, Llamas, and Tariq [CLT07] demonstrated GPU-based re-
altime 3D simulation and visualization of different fluid phenomena
like liquids, smoke and fire based on level-set methods.

One of the first to make use of an abstracted GPGPU framework for
the LBM was Tölke [Töl09], who implemented it on Nvidia’s CUDA
framework.

Because of their inherent irregularity, particle based methods tend
to be more difficult to implement on GPUs. Nonetheless Kolb and
Cuntzn [KC05] developed a mapping of SPH on the GPU based
on OpenGL (cross-platform) and Cg (which compiles to DirectX
shaders).

Krog and Elster [KE10] achieved SPH simulation of 256k particles
at realtime speeds based on a CUDA implementation.

The Shallow-Water Equations and heightfield based approaches are
even more attractive for GPGPU, since their two-dimensional nature
makes them not only computationally less expensive than full 3D
models, but also maps well onto GPU hardware and graphics primi-
tives.

Early work in this area was done by Hagen et al. [Hag+05], who
implemented solver for the SWE using OpenGL and Cg. They ob-
served a speed-up of 15-30 times compared to CPU implementations
of the SWE. Their model already supports dry areas and complex
bottom topographies.

By porting a well-balanced finite volume scheme of the SWE to
CUDA, Asunción, Mantas, and Castro [AMC11] achieved significant
speedups compared to earlier shader-based methods.

Recent research combines the heightfield with full 3D models to
take advantage of the simplicity and realtime speed of the SWE while
still simulating details that cannot be represented by a heightfield.
Examples for this are the extensions of SWE to include bubbles and
foam [Thü+07b] or breaking waves [Thü+07a], to put 3D grid cells
on top of heightfield-like tall cells [CM11], or to couple a heightfield
with a 3D grid as well as particles for large scale, yet detailed fluid
phenomena [CMK14].
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2.2.2 Shallow-Water Equations in Flood Simulation

Unlike the field of Fluid Animation, which is more concerned with
simulation speed, the simulation of floods requires physically accurate
models. Although off-line simulation is acceptable here, the simula-
tion domains usually span such large scales that a simplification from
three-dimensional flows to depth-averaged two-dimensional models
such as the SWE is required to make them tractable at all [Geo10].

In addition, the particular topography of a target area is often
taken into account to optimize the simulation with highly irregular
meshes - allowing efficient handling of scenarios that contain both
small and large scales, at the cost of a much more complicated for-
mulation of the SWE. This tradeoff is discussed in detail in [Kim+14].

Another way of addressing this problem of multiple scales is adap-
tive refinement of a regular grid into smaller subgrids. Liang et al.
present such a method in [Lia+08] - this paper incidentally also gives
a good overview over the motivation, challenges and methods of flood
simulation - much better than I could attempt with my limited un-
derstanding of the field - so I kindly refer you to them.
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Chapter 3

Model and
Implementation

Based on my initial inexperience with fluid simulation (and its ap-
plication to flood simulation), I set out on a highly iterative pro-
cess of implementing a basic shallow-water simulation, observing its
shortcomings and overcoming them by a combination of research and
empirical experimentation.

This rapid iteration and very practical learning and implementa-
tion process was made possible largely by the dynamic nature of
the web development environment - giving immediate feedback to
changes in code (without compilation time) and allowing for a very
exploratory programming style.

Nonetheless, the final model and implementation scheme was cho-
sen at the beginning of my work. I will outline these initial choices,
describe the implementation of the simulation in detail and mention
modifications that became necessary. Finally, I will show how the
simulation forms part of a web application.

3.1 Selection of Shallow-Water Model

3.1.1 Model Characteristics

An Eulerian grid-based method to solve the SWE was chosen, because
of its straightforward mapping to graphics programming concepts and
my prior familiarity with it. Following [Mül+08], a semi-lagrangian
advection scheme à la Stam [Sta99] was adopted, because of its sta-
bility and intuitive simplicity.

Also for the sake of simplicity, the common practice of a staggered
MAC grid was not adopted - instead all quantities are defined at cell
centers. This seemed to be stable enough throughout the work.
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3.1.2 Numerical Method

When looking again at the Shallow-Water Equations:

Dη

Dt
= −η∇ · ~v (2.12)

D~v

Dt
= g∇h (2.13)

it can be seen that the left sides represent advection along the ve-
locity field ~v while the right sides account for additional accelerations
(in the case of η, this refers to the change in water height due to
in/outflow determined by the divergence ∇ · ~v of the velocity field).

Like in [Mül+08] an explicit time integration scheme is chosen
(again favoring simplicity over accuracy), resulting in the following
step-wise numerical solver for the SWE:

Advection

~v∗[~x] = ~vt[~x− ~vt[~x]∆t] (3.1)

η∗[~x] = ηt[~x− ~vt[~x]∆t] (3.2)

Integration

ηt+1[~x] = η∗[~x]− η∗[~x]∇ · ~v∗[~x]∆t (3.3)

~vt+1[~x] = ~v∗[~x]− g∇h∆t (3.4)

Here, ~vt[~x] and ηt[~x] represent velocity and water height at time t
and position ~x. ∗ represents intermediate values between time steps.

3.2 Implementation on the GPU

3.2.1 Basic Graphics-Based GPGPU

This section assumes knowledge of basic 3D computer graphics prim-
itives and operations and will explain the most basic way how they
can be used for GPGPU.

The first important concept to grasp is that textures can be used
to store generic data. This requires a two-dimensional layout of the
data over the texture. In our case of grid based fluid simulation
(and many other problems in GPGPU) the data is already organized
two-dimensionally, making this step trivial.

At each discrete texel the according data at this position has to
be encoded into the color vector of this texel. Depending on the
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texture format, this vector usually has one, three or most commonly
four components, which can be integers or floating-point values (the
encoding used in our case is described in the next section)

Framebuffers can be used as virtual screens to render to, and can
subsequently be read from like a normal texture. This is typically
used for scene-in-scene effects and reflections.

By rendering a pair of triangles that together cover a whole virtual
screen (a full-screen quad) and using a framebuffer as the render
target, we can force the currently set fragment shader to execute
exactly once per pixel of the virtual screen / texel of the framebuffer.

From our GPGPU viewpoint this means that the fragment shader
can perform many computations in parallel and output the results
into the framebuffer, using our special color encoding.

Since the fragment shader can arbitrarily read from other textures
and framebuffers, we can keep swapping out two framebuffers after
each render step to achieve an infinite feedback effect (also called
the ping-pong technique). Many numerical schemes map naturally to
this, since all they do per time step is to calculate the new state of a
system based on an old one and then they repeat the process.

All that needs to be done is to fill one framebuffer with some intial
data (in the case of simulations initial conditions) and then to chain
draw calls of fragment shaders that perform operations on this data,
swapping out framebuffers in between.

3.2.2 Data Representation

The shallow-water simulation is implemented to be completely based
one simulation framebuffer, which directly represents the simulation
grid. In each texel of the framebuffer, the simulation data for one
grid cell is encoded as a 4-component floating-point color: the two-
dimensional velocity vector resides in the red (x) and green (y) chan-
nels, the blue channel contains water height, and the alpha channel
contains terrain height.

3.2.3 Simulation DSL and Shader Prefix

In initial implementations, this mapping of simulation values to tex-
ture positions and color channels was very explicitly visible in the
shader programs describing the simulation steps, in many cases need-
lessly obfuscating what was happening.

As an exercise towards a more declarative domain specific pro-
gramming style for these simulation shaders, a simple shader prefix
was created, containing only a few macros and declarations that al-
most completely abstract away the fact that we are dealing with color
vectors inside a fragment shader (see A.1).
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Mainly, it offers are the V(), Vx() and Vy() macros for accessing
the velocity and its components inside a texel, the T() and H() macros
for accessing terrain height and water height inside a texel and the
helper macro L() = T() + H() which adds terrain height and water
height to give the water level above zero.

Because this shader prefix is prepended to all simulation step shaders,
its definitions are accessible to them.

3.2.4 Simulation Steps

Each update step of the simulation is divided into substeps, according
to the numerical method described in section 3.1.2. Their most basic
forms are now given in order of execution.

Advection of Water Height and Velocity

First, velocity and water height are advected according to (3.2): The
velocity vector at the current position is read and extrapolated back-
wards according to the timestep, giving the origin position of where
a virtual particle would have been previously.

The simulation framebuffer is then queried at this origin position
and the velocity/water height there is returned as the new veloci-
ty/water height of the current cell.

1 vec4 simulationStep() {

2 vec4 here = simData(pos);

3

4 vec4 origin = simData(pos - dt * V(here));

5 float newHeight = H(origin);

6 vec2 newVelocity = V(origin);

7

8 return vec4(newVelocity, newHeight, T(here));

9 }

Since no staggered grid is used, velocity and water height for each
cell will be looked up from exactly the same origin position – this
makes it possible to perform velocity and water height advection to-
gether, using just two framebuffer lookups per cell instead of four.
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Integration of Height

Height is integrated according to (3.3). The divergence of the velocity
field is calculated based on finite differences of ±1 cell size (unit) in
either direction:

1 vec4 simulationStep() {

2 vec4 here = simData(pos);

3 vec4 X1 = simData(posLeft);

4 vec4 X2 = simData(posRight);

5 vec4 Y1 = simData(posTop);

6 vec4 Y2 = simData(posBottom);

7

8 float dVelocityX = (Vx(X2) - Vx(X1)) / (2.0 * unit);

9 float dVelocityY = (Vy(Y2) - Vy(Y1)) / (2.0 * unit);

10 float velocityDivergence = (dVelocityX + dVelocityY);

11

12 float fluxArea = H(here);

13 float newHeight = H(here) - fluxArea * velocityDivergence * dt;

14

15 return vec4(V(here), newHeight, T(here));

16 }

Integration of Velocity

For the integration of velocity according to (3.4), the slope of the
water level is also calculated using finite differences, making use of
the L() macro. The additional uniform value gravity is declared as
an input for just this step.

1 uniform float gravity;

2

3 vec4 simulationStep() {

4 vec4 here = simData(pos);

5 vec4 X1 = simData(posLeft);

6 vec4 X2 = simData(posRight);

7 vec4 Y1 = simData(posTop);

8 vec4 Y2 = simData(posBottom);

9

10 vec2 slope = vec2(L(X2) - L(X1), L(Y2) - L(Y1)) / (2.0 * unit);

11

12 vec2 newVelocity = V(here) - gravity * slope * dt;

13

14 return vec4(newVelocity, H(here), T(here));

15 }

3.3 Adaptation for Flood Simulation

3.3.1 Modifications for Drying/Wetting

For application of fluid simulation to flood scenarios, a good repre-
sentation and handling of dry areas is required. This poses two new
challenges: finding correct boundary conditions at the interface of
water with the underlying terrain, and handling wetting and drying
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properly, which describes the propagation of water into dry areas and
the creation of new dry areas by receding water.

Medeiros and Hagen [MH12] give a very good overview of different
approaches to wetting/drying in current research. For this work, a
lot of experimentation was required to find something that works.

Definition and Handling of Dry Areas

Dry areas are defined to be all cells where the water height is equal to,
or smaller than zero. The velocity in dry areas is assumed to be zero,
which completely disables advection into these areas. Modifications
of height and velocity integration make water transport into dry areas
possible again.

Advection

In the case of advection of nothing - out of a dry area into a wet area
(leading to water loss), no advection is performed. The velocity at
this cell is set to zero to prevent further erroneous advection.

1 vec4 simulationStep() {

2 vec4 here = simData(pos);

3

4 if (H(here) <= 0.0) return vec4(V(here), H(here), T(here));

5

6 vec4 origin = simData(pos - dt * V(here));

7 float newHeight = H(origin);

8 vec2 newVelocity = V(origin);

9

10 if (newHeight <= 0.0) {

11 newHeight = H(here);

12 newVelocity = vec2(0.0, 0.0);

13 }

14

15 return vec4(newVelocity, newHeight, T(here));

16 }

An early-return is added to speed up computation in dry areas.

Reasonable Velocities at the Boundary

For the integration of velocity, more complicated modifications are
necessary: the calculation of slope has to be corrected. If one or
more neighboring cells are dry, the näıve water level obtained by
L(neighbor) = H(neighbor) + T(neighbor) might end up higher
than the current cell.

This would lead to nonphysical velocities pointing into the wet
areas, which in turn would cause incorrect appearance of water during
the height integration step (because of a constant negative velocity
divergence at the boundary).
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Figure 3.1: Slope Correction

Thus, in such cases, the water level at the neighboring cell is ig-
nored and replaced by the water level of the current cell - this corre-
sponds to a flat water surface in the real world (see figure 3.1.

Additionally, velocities that would point outwards of a wet area
are set to zero, causing water to build up at wetting fronts during the
height integration step. Later, water transport into dry areas will be
ensured, based on the height of the built-up water. Without these
measures, water would just vanish into dry areas.

1 uniform float gravity;

2

3 vec4 simulationStep() {

4 vec4 here = simData(pos);

5

6 if (H(here) < 0.0) return vec4(0.0, 0.0, H(here), T(here));

7

8 vec4 X1 = simData(posLeft);

9 vec4 X2 = simData(posRight);

10 vec4 Y1 = simData(posTop);

11 vec4 Y2 = simData(posBottom);

12

13 // boundary: assume water is flat until shoreline

14 float L_X1 = H(X1) < 0.0 && T(X1) > L(here) ? L(here) : L(X1);

15 float L_X2 = H(X2) < 0.0 && T(X2) > L(here) ? L(here) : L(X2);

16 float L_Y1 = H(Y1) < 0.0 && T(Y1) > L(here) ? L(here) : L(Y1);

17 float L_Y2 = H(Y2) < 0.0 && T(Y2) > L(here) ? L(here) : L(Y2);

18

19 vec2 slope = vec2(L_X2 - L_X1, L_Y2 - L_Y1) / (2.0 * unit);

20

21 vec2 newVelocity = V(here) - gravity * slope * dt;

22

23 if (H(X1) < 0.0 || H(X2) < 0.0) newVelocity.x = 0.0;

24 if (H(Y1) < 0.0 || H(Y2) < 0.0) newVelocity.y = 0.0;

25

26 return vec4(newVelocity, H(here), T(here));

27 }

Again, we add an early return, no computation is done in dry areas.
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Wetting during Integration of Height

The integration of height naturally models drying, but for low veloc-
ities, residual thin layers of water can remain for a long time before
drying up. In the real world, surface tension would prevent this.
In order to achieve a similar effect, the flux area for each cell that
determines how much water streams in or out is clamped to be at
least minFluxArea. Otherwise, the computation for wet cells stays
the same.

In contrast to the other two steps, dry cells are also handled by
this step, but they don’t participate in the normal simulation. Only
a check is performed for them: if any neighboring cells contain wa-
ter and their water level is higher than the dry cell plus a small
wettingThreshold, the dry cell is wetted and initialized to newlyWetHeight.
In the following time steps it will participate in the simulation.

1 const float wettingThreshold = 0.000001;

2 const float newlyWetHeight = 0.0000003;

3 const float minFluxArea = 0.01;

4

5 vec4 simulationStep() {

6 vec4 here = simData(pos);

7 vec4 X1 = simData(posLeft);

8 vec4 X2 = simData(posRight);

9 vec4 Y1 = simData(posTop);

10 vec4 Y2 = simData(posBottom);

11

12 float dVelocityX = (Vx(X2) - Vx(X1)) / (2.0 * unit);

13 float dVelocityY = (Vy(Y2) - Vy(Y1)) / (2.0 * unit);

14 float velocityDivergence = (dVelocityX + dVelocityY);

15

16 float newHeight;

17

18 if (H(here) <= 0.0) {

19 if ((H(X1) > wettingThreshold

20 && L(X1) > T(here) + wettingThreshold)

21 || (H(X2) > wettingThreshold

22 && L(X2) > T(here) + wettingThreshold)

23 || (H(Y1) > wettingThreshold

24 && L(Y1) > T(here) + wettingThreshold)

25 || (H(Y2) > wettingThreshold

26 && L(Y2) > T(here) + wettingThreshold)

27 ) {

28 newHeight = newlyWetHeight;

29 } else {

30 newHeight = H(here);

31 }

32 } else {

33 float fluxArea = max(H(here), minFluxArea);

34 newHeight = H(here) - fluxArea * velocityDivergence * dt;

35 }

36

37 return vec4(V(here), newHeight, T(here));

38 }
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3.3.2 Modifications for Friction

In addition to wetting/drying, bed friction at the bottom of the wa-
ter volume is required to achieve realistic flooding behaviour. It is
commonly implemented as a bed friction slope term that counteracts
acceleration due to water level slope. It is given by:

~Sf = n2
~v · |~v|
h

4
3

Where n is Manning’s Friction Coefficient.

In the time-discretized shader code, the velocity value of the previ-
ous time step is taken as an approximation for ~v, to keep the velocity
update simple and explicit (otherwise the new velocity would reap-
pear on the right hand side, in the friction slope term).

This approximation only caused problems when a large velocity in
the previous time step resulted in a large friction slope that opposes
and overpowers the terrain slope of the current time step, resulting
in a very nonphysical inversion of velocities. This is prevented by
limiting how much the friction slope.

1 uniform float manningCoefficient;

2 uniform float gravity;

3

4 vec4 simulationStep() {

5 vec4 here = simData(pos);

6 if (H(here) < 0.0) return vec4(0.0, 0.0, H(here), T(here));

7 vec4 X1 = simData(posLeft);

8 vec4 X2 = simData(posRight);

9 vec4 Y1 = simData(posTop);

10 vec4 Y2 = simData(posBottom);

11

12 // boundary: assume water is flat until shoreline

13 float L_X1 = H(X1) < 0.0 && T(X1) > L(here) ? L(here) : L(X1);

14 float L_X2 = H(X2) < 0.0 && T(X2) > L(here) ? L(here) : L(X2);

15 float L_Y1 = H(Y1) < 0.0 && T(Y1) > L(here) ? L(here) : L(Y1);

16 float L_Y2 = H(Y2) < 0.0 && T(Y2) > L(here) ? L(here) : L(Y2);

17

18 vec2 slope = vec2(L_X2 - L_X1, L_Y2 - L_Y1) / (2.0 * unit);

19 float n = manningCoefficient;

20 vec2 frictionSlope = V(here) * length(V(here)) * pow(n, 2.0)

21 / pow(H(here), 4.0/3.0);

22

23 vec2 totalSlope = slope + frictionSlope;

24 // make sure new slope doesn't point in other direction

25 totalSlope.x = slope.x < 0.0 ?

26 min(totalSlope.x, 0.0) : max(totalSlope.x, 0.0);

27 totalSlope.y = slope.y < 0.0 ?

28 min(totalSlope.y, 0.0) : max(totalSlope.y, 0.0);

29 totalSlope.x = slope.x == 0.0 ? 0.0 : totalSlope.x;

30 totalSlope.y = slope.y == 0.0 ? 0.0 : totalSlope.y;

31

32 vec2 newVelocity = V(here) - gravity * totalSlope * dt;

33

34 if (H(X1) < 0.0 || H(X2) < 0.0) newVelocity.x = 0.0;

35 if (H(Y1) < 0.0 || H(Y2) < 0.0) newVelocity.y = 0.0;

36

37 return vec4(newVelocity, H(here), T(here));

38 }
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3.4 WebFlood as a Web Application

In addition to basic setup and scaffolding, WebFlood provides a 3D
visualization and user interface for the simulation.

Figure 3.2: Running simulation with visualization and UI

This user interface allows loading of different scenarios, playback
control for the simulation and on-the-fly changing of simulation pa-
rameters (See Figure 3.2). It offers tools for adding water gauges at
arbitrary positions in the world (see Figure 3.3) and exporting their
hydrographs as .svg files (in fact this is what the diagrams in section
4.1 are based on). It also offers various options to overlay the terrain
with additional info, for example maximum inundation depth and
terrain contours (See Figure 3.4).

WebFlood imports and exports most simulation and visualization
data (for example terrain heightmaps, initial water conditions, gener-
ated inundation maps) from/to 16-bit greyscale TIFF images, which
offer higher dynamic resolution than common 8-bit image formats,
while still being widely supported by standard graphics software.

Scenarios and their default parameters and references to source
data files are defined in a human-readable JSON file. Here, gauge
locations can be predefined and complemented by reference data from
literature, which will be displayed as small dots in gauge diagrams
(see Figure 3.3)

WebFlood is hosted at http://aeickhoff.github.io/WebFlood/
and its source code is available at https://github.com/aeickhoff/
WebFlood
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Figure 3.3: Water gauges UI

Figure 3.4: Terrain overlays
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Chapter 4

Results and Validation

4.1 2D Dam Break of Fraccarollo & Toro (1995)

The two-dimensional dam break experiment by Fraccarollo and Toro
[FT93] laid important empirical groundwork for validating the de-
tailed behaviour of all kinds of fluid simulations. It was chosen as the
main synthetic test case for WebFlood because of its simple setup
and plentiful experimental data points to compare against.

Figure 4.1: Probe setup of Fraccarollo and Toro [FT93]

A simplified subset of test points has been adopted of Lin, Lai, and
Guo [LLG05], as well as the idea to test the simulation first with an
already-wet floodplain.

WebFlood reproduces behaviour from the experiment well, with
the exception of point 4. In [LLG05], too, a deviation at this point
is observed - it is suggested that at this point (dam opening) the
shallow-water assumptions are particularly inaccurate.

Later, the test was performed with a dry floodplain (see figure
4.3) to test the influence or side effects of drying/wetting, the results
turned out to be identical.
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Figure 4.2: Water height at test points for wet floodplain

Figure 4.3: Dam break with a dry floodplain
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4.2 2008 Floods in Iowa State, USA

Due to especially intense rainfall in May and June of 2008, the Iowa
and Cedar rivers experienced record floods, severely affecting different
municipal areas in Iowa State [USGS10].

In response to these floods, the Iowa Flood Center was established
and funded by the the state of Iowa in 2009, it conducts flood related
research and participates actively in projects to create flood inunda-
tion maps and high-resolution elevation maps (based on LiDAR laser
scans) for the state of Iowa.

For this work, Iowa City was selected as simulation area, since Iowa
River directly goes through its urban center and its hilly topography
is both interesting to look at and challenging for the simulation.

4.2.1 Source Data, Processing and Possible Sources of
Inaccuracy

Digital elevation data (already based on these LiDAR maps) was ob-
tained from The National Map Viewer of the U.S. Geological Survey
[NatMap].

This data was then reprojected, cropped, the elevation rescaled
and converted to a 512×512px heightmap image (see Fig. 4.4) using
utilities from [GDAL] and Adobe Photoshop.

Figure 4.4: Heightmap of Iowa City

Since this was my first experience in handling GIS data, I might
have inadvertently introduced inaccuracies - I could only roughly
cross check distances and elevation ranges inside the simulation with
real map data, they seemed to be in accordance.

The heighmap was then further edited by hand: first only bridges
over the riverbed that were seen as obstacles by LiDAR were removed.
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Later, after comparing the simulation results to real flood be-
haviour, additional measures were taken: the riverbed was deepened,
since LiDAR reacts to the water surface of a river and thus does not
faithfully represent the true riverbed geometry - this step was highly
speculative but improved simulation behaviour.

Then a friction map was introduced, making a non-uniform value of
Manning’s friction coefficient possible. It is common to choose differ-
ent friction coefficients for the riverbed and its banks (see “National
Engineering Handbook”, p. 11 [EngHbk]). The base value for the
friction coefficient and local multiplicators in the friction map were
selected according to resources such as Guide for Selecting Manning’s
Roughness Coefficients for Natural Channels and Flood Plains [Man-
Coef] and based on the quality of resulting simulation behaviour.

4.2.2 Deviation of Simulation from Inundation Maps

Keep the previous section in mind to take the following results with
a grain of salt and see them more as qualitative rather than fully
quantitative comparisons.

The main benchmark for the accuracy of WebFlood were existing
inundation maps of Iowa. These are available in two types: inunda-
tion area outlines, which were obtained from the Iowa Flood Infor-
mation System [FldInfo] and inundation depth maps which were ob-
tained from the National Weather Service [WthrSrv] (both resources
are available for the public).

The following two tables 4.1 and 4.2 compare simulation data with
these inundation maps. The Source Height parameter of WebFlood
and corresponding river stage value of the inundation maps is given.

In the top rows of the tables, the water depth of WebFlood (bluer is
deeper, white shallower, transparent represents zero water) is overlaid
by the inundation outline, showing the difference in flooded areas in
general. It can be seen that the simulation follows these outlines
quite well, but tends to flood areas slightly too late/too slowly.

In the bottom rows of the tables, the error between the simulation
water depth and inundation depth map is shown. There seems to
be some discrepancy between inundation depth maps and inundation
outlines, since for a river stage of 27.5ft, there is an area that is
flooded in WebFlood and the inundation outlines, but not (yet) in the
inundation depth maps leading to an unusually large error. The error
inside the riverbed is consistently quite large, but this is most likely
due to my mis-estimated river bed depth (as mentioned in section
4.2.1). Apart from that, outside the riverbed, the water heights in
flooded areas vary only very little compared to the existing inundation
depth maps.
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Source Height 7.5 / 25.5ft River Stage Source Height 7.7 / 26.5ft River Stage Source Height 7.9 / 27.5ft River Stage

Table 4.1: Deviation from Inundation Maps for River Stages 25.5-27.5ft
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Source Height 8.1 / 28.5ft River Stage Source Height 8.9 / 31.5ft River Stage Source Height 9.5 / 34.0ft River Stage

Table 4.2: Deviation from Inundation Maps for River Stages 28.5-34.0ft
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4.3 Performance

Since the simulation kept changing significantly up until the end of
this work, I unfortunately did not find time to do rigorous perfor-
mance tests. WebFlood includes timers that show one-second mini-
mum, maximum and average frame durations, including both simu-
lation and visualization.

To give at least a rough idea: on integrated graphics processors for
laptops such as Intel Iris, a frame consisting of one simulation step
on a 512 × 512px map takes 50ms, a frame consisting of 10 steps
takes 100ms and a frame consisting of 100 steps takes close to 1s.

Contrast this with current-generation dedicated desktop CPUs where
10 steps on a 512× 512px map run at the capped browser framerate
of 60FPS (and thus 16.6ms) and 100 steps still only take 35ms.

CPU usage is constantly below 15% on laptops and 4% on desktop
machines - performance seems to be mainly GPU-dependent. It also
doesn’t vary perceptibly between different browsers.
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Chapter 5

Conclusion and Future
Work

5.1 Suggested Applications

Inspired by the Iowa Flood Information System [FldInfo], one obvious
usage of an in-browser flood simulation like WebFlood could be to
inform the public about past, ongoing and predicted floods. Since the
simulation runs interactively even on commodity hardware, the sim-
ulation parameters could be updated to realtime values from actual
river gauges.

Thanks to its interactive features, it could also be used to quickly
test and compare different flood situations. In this way, it could aid
decision processes during a flood - even without access to a lot of
computing resources.

Finally, WebFlood could be an example of demonstrating and teach-
ing the fundamental theory of a field of interest (in this case hy-
draulics) in a hands-on, toy-like but still serious manner. Different
target audiences can be supported by offering the full range of par-
ticipation: just observing the simulation, interacting with its param-
eters and seeing live changes or even looking at and understanding
its source code, development process and related work. I would call
this idea Simulation Aided Education.

5.2 Possible Future Plans

One direction that was only hinted at in WebFlood (by offering over-
lay visualizations for maximum inundation depth, flow velocity and
flood duration at each point of the map) was the modeling and pre-
diction of damage due to flooding. This could be much more ex-
plicitly supported by incorporating for example land usage maps and
estimating vulnerability of different structures to water depth, water
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speed and flood duration. Based on that, actual damage predictions
could be calculated.

Regarding the implementation of the simulation itself, there is still
a lot of obvious room for optimization, at least for floods of rivers,
where most of grid cells are dry and just use up computational re-
sources. A simple tiling of the simulation domain and discarding
of inactive tiles would probably already lead to significant improve-
ments. Of course even more complicated methods such as adaptive
multiresolution grids could be adapted.

In general, the simulation would greatly benefit from a more rigor-
ous implementation according to current best practises, to ensure full
mass conservation, better stability and less artifacts like nonphysical
oscillations.

5.3 State and Future of WebGL for GPGPU

The main and almost show-stopping problem of WebGL for GPGPU
is the difficulty of communication from GPU back to CPU: only a syn-
chronous version of gl.readPixels is offered. A simple CPU read
of an (unused) framebuffer can block the main and only javascript
thread for the duration of a full frame or longer, preventing further
computation on both CPU and GPU during that time. In WebFlood
this was avoided where possible, but is required for export of simula-
tion data and display of gauge data.

A smaller annoyance is the fact that floating-point framebuffers can
be used on the GPU but not read back to the CPU - to circumvent
this, a special shader has to be used that encodes a float into a vector
of four unsigned integers. On the CPU this has to be decoded back
into a float.

Since WebGL is still only based on OpenGL ES 2.0, it misses many
features of more modern graphics APIs that would also be interest-
ing for GPGPU. Examples are geometry shaders, which would allow
generation of dynamic amounts of data on the GPU, 3D and array
textures and transform feedback, which allows to also store the out-
put of vertex shaders in buffers for reuse. Many of these features
are planned to be introduced in WebGL 2, which will be based on
OpenGL ES 3.0 [Jon13].

In light of these planned features and after seeing how much can
be achieved even in such a restrictive environment as WebGL 1, I am
excited about the future of WebGL.
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5.4 Final Conclusion

Many complex systems that are difficult to describe with words and
even pictures or videos can become intuitive in interactive simula-
tions. This work has additionally convinced me of that and made me
even more intrigued about the possibilities in this direction.
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Appendix A

Appendix

A.1 Simulation Shader Prefix

1 #ifdef GL_ES

2 precision highp float;

3 #endif

4

5 // main data texture and uniform inputs

6

7 uniform sampler2D texture;

8 uniform float unit, dt;

9

10 // current and neighbor positions, passed from vertex shader

11

12 varying vec2 pos, posLeft, posRight, posTop, posBottom;

13

14 // macros to access components of simulation data vector

15

16 #define V(D) D.xy // velocity

17 #define Vx(D) D.x // velocity (x-component)

18 #define Vy(D) D.y // velocity (y-component)

19 #define H(D) D.z // water height

20 #define T(D) D.w // terrain height

21 #define L(D) H(D) + T(D) // water level

22

23 // query (and interpolate) simulation data from texture

24

25 vec4 simData (vec2 pos) {

26 return texture2D(texture, pos);

27 }

28

29 // forward declare simulationStep

30 // will be implemented by simulation shader

31

32 vec4 simulationStep();

33

34 // use return value of simulationStep as output color

35

36 void main(void) {

37 gl_FragColor = simulationStep();

38 }

42


	Introduction
	Motivation
	Fluid and Flood Simulation as a Topic
	GPGPU using WebGL
	Goal

	Related Work and Background
	Fluid Simulation: Equations and Models
	The Incompressible Navier-Stokes Equations
	Grid Based Methods
	Particle Based Methods
	Hybrid and Other Approaches
	The Shallow Water Equations

	Two Specializations of Fluid Simulation
	Real Time GPU Based Fluid Animation
	Shallow-Water Equations in Flood Simulation


	Model and Implementation
	Selection of Shallow-Water Model
	Model Characteristics
	Numerical Method

	Implementation on the GPU
	Basic Graphics-Based GPGPU
	Data Representation
	Simulation DSL and Shader Prefix
	Simulation Steps

	Adaptation for Flood Simulation
	Modifications for Drying/Wetting
	Modifications for Friction

	WebFlood as a Web Application

	Results and Validation
	2D Dam Break of Fraccarollo & Toro (1995)
	2008 Floods in Iowa State, USA
	Source Data, Processing and Possible Sources of Inaccuracy
	Deviation of Simulation from Inundation Maps

	Performance

	Conclusion and Future Work
	Suggested Applications
	Possible Future Plans
	State and Future of WebGL for GPGPU
	Final Conclusion

	Appendix
	Simulation Shader Prefix


